
BioMed CentralBMC Bioinformatics

ss
Open AcceSoftware
BLAST+: architecture and applications
Christiam Camacho, George Coulouris, Vahram Avagyan, Ning Ma,
Jason Papadopoulos, Kevin Bealer and Thomas L Madden*

Address: National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Building 38A, 8600
Rockville Pike, Bethesda, MD 20894, USA

Email: Christiam Camacho - camacho@ncbi.nlm.nih.gov; George Coulouris - coulouri@ncbi.nlm.nih.gov;
Vahram Avagyan - avagyanv@ncbi.nlm.nih.gov; Ning Ma - maning@ncbi.nlm.nih.gov; Jason Papadopoulos - jasonp@boo.net;
Kevin Bealer - kevinbealer@gmail.com; Thomas L Madden* - madden@ncbi.nlm.nih.gov

* Corresponding author

Abstract
Background: Sequence similarity searching is a very important bioinformatics task. While Basic
Local Alignment Search Tool (BLAST) outperforms exact methods through its use of heuristics,
the speed of the current BLAST software is suboptimal for very long queries or database
sequences. There are also some shortcomings in the user-interface of the current command-line
applications.

Results: We describe features and improvements of rewritten BLAST software and introduce new
command-line applications. Long query sequences are broken into chunks for processing, in some
cases leading to dramatically shorter run times. For long database sequences, it is possible to
retrieve only the relevant parts of the sequence, reducing CPU time and memory usage for
searches of short queries against databases of contigs or chromosomes. The program can now
retrieve masking information for database sequences from the BLAST databases. A new modular
software library can now access subject sequence data from arbitrary data sources. We introduce
several new features, including strategy files that allow a user to save and reuse their favorite set
of options. The strategy files can be uploaded to and downloaded from the NCBI BLAST web site.

Conclusion: The new BLAST command-line applications, compared to the current BLAST tools,
demonstrate substantial speed improvements for long queries as well as chromosome length
database sequences. We have also improved the user interface of the command-line applications.

Background
Basic Local Alignment Search Tool (BLAST) [1,2] is a
sequence similarity search program that can be used to
quickly search a sequence database for matches to a query
sequence. Several variants of BLAST exist to compare all
combinations of nucleotide or protein queries against a
nucleotide or protein database. In addition to performing

alignments, BLAST provides an "expect" value, statistical
information about the significance of each alignment.

BLAST is one of the more popular bioinformatics tools.
Researchers use command-line applications to perform
searches locally, often searching custom databases and
performing searches in bulk, possibly distributing the

Published: 15 December 2009

BMC Bioinformatics 2009, 10:421 doi:10.1186/1471-2105-10-421

Received: 28 July 2009
Accepted: 15 December 2009

This article is available from: http://www.biomedcentral.com/1471-2105/10/421

© 2009 Camacho et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/421
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20003500
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
searches on their own computer cluster. The current
BLAST command-line applications (i.e., blastall and blast-
pgp) were available to the public in late 1997. They are
part of the NCBI C toolkit [3] and are supported on a
number of platforms that currently includes Linux, vari-
ous flavors of UNIX (including Mac OS X), and Microsoft
Windows.

The initial BLAST applications from 1997 lacked many
features that are presently taken for granted. Within three
years of the initial public release, BLAST was modified to
handle databases with more than 2 billion letters, to limit
a search by a list of GenInfo Identifiers (GIs), and to
simultaneously search multiple databases. PHI-BLAST [4],
IMPALA [5], and composition-based statistics [6] were
also introduced within this time period, followed by
MegaBLAST [7] and the concept of query-concatenation
(whereby the database is scanned once for many queries).
Chris Joerg of Compaq Computer Corporation suggested
performance enhancements in 1999. A group at Apple,
Inc. suggested other enhancements in 2002 [8]. These and
other features were of great importance to BLAST users,
but the continual addition of unforeseen modifications
made the BLAST code fragile and difficult to maintain.

Many mammalian genomes contain a large fraction of
interspersed repeats, with 38.5% of the mouse genome
and 46% of the human genome reported as interspersed
repeats [9]. Traditionally, the only supported method
available to mask interspersed repeats in stand-alone
BLAST has been to execute a separate tool (e.g., Repeat-
Masker [10]) on a query, produce a FASTA file with the
masked region in lower-case letters, and have BLAST treat
the lower-case letters as masked query sequence. This
requires separate processing on each query before the
BLAST search.

NCBI recently redesigned the BLAST web site [11] to
improve usability [12], which helped to identify issues
that might also occur in the stand-alone BLAST com-
mand-line applications. These changes have, unfortu-
nately, made it more difficult to match parameters used in
a stand-alone search with default parameters on the NCBI
web site.

The advent of complete genomes resulted in much longer
query and subject sequences, leading to new challenges
that the current framework cannot handle. At the same
time, increases in generally available computer memory
made other approaches to similarity searching viable.
BLAT [13] uses an index stored in memory. Cameron and
collaborators designed a "cache-conscious" implementa-
tion of the initial word finding module of BLAST [14]. The
concerns listed in this section and the start of a new C++

toolkit at the NCBI [15] motivated us to rewrite the BLAST
code and release a completely new set of command-line
applications. Here we report on the design of the new
BLAST code, the resulting improvements, and a new set of
BLAST command-line applications.

In this article, a search type is described by a word or two
in all upper-case letters. For example, a BLASTX search
translates the nucleotide query in six frames and compares
it to a protein database.

Implementation
This section reports first on the overall design of the new
software and then discusses several enhancements to
BLAST.

Overall design
Two criteria were most important in the design of the new
BLAST code: 1.) the code structure should be modular
enough to allow easy modification; and 2.) the same
BLAST code should be embedded in at least two different
host toolkits. This would allow both the new NCBI C++
toolkit and the older NCBI C toolkit to use the same
BLAST source code.

At a high level, the BLAST process can be broken down
into three modules (Figure 1). The "setup" module sets up
the search. The "scanning" module scans each subject
sequence for word matches and extends them. The "trace-
back" module produces a full gapped alignment with
insertions and deletions.

The setup phase reads the query sequence, applies low-
complexity or other filtering to it, and builds a "lookup"
table (i.e., perfect hashing). The lookup table contains
only words from the query for nucleotide-nucleotide
searches such as BLASTN or MEGABLAST. DISCONTIGU-
OUS MEGABLAST allows non-consecutive matches in the
initial seed. Protein-protein searches such as BLASTP
allow "neighboring" words. The neighboring words are
similar to a word in the query, as judged by the scoring
matrix and a threshold value.

The scanning phase scans the database and performs
extensions. Each subject sequence is scanned for words
("hits") matching those in the lookup table. These hits are
used to initiate a gap-free alignment. Gap-free alignments
that exceed a threshold score then initiate a gapped align-
ment, and those gapped alignments that exceed another
threshold score are saved as "preliminary" matches for
further processing. The scanning phase employs a few
optimizations. The gapped alignment returns only the
score and extent of the alignment. The number and posi-
tion of insertions, deletions and matching letters are not
Page 2 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
stored (no "trace-back), reducing the CPU time and mem-
ory demands. Searches against nucleotide subject
sequences consider only unambiguous bases (A, C, G, T),
with ambiguous bases (e.g., N) replaced at random during
preparation of the BLAST database or subject sequence. A
four letter alphabet allows packing of four bases into one
byte, and the subject sequences are scanned four letters at
a time. Finally, less sensitive heuristic parameters are
employed for the gapped alignment, and the full extent of
a gapped alignment may, in rare cases, not be found.

The final phase of the BLAST search is the trace-back.
Insertions and deletions are calculated for the alignments
found in the scanning phase. Ambiguous bases are
restored for nucleotide subject sequences, and more sen-
sitive heuristic parameters are used for the gapped align-
ment. Composition-based statistics [6] may also be
applied for BLASTP (protein-protein) and TBLASTN (pro-
tein compared against translated nucleotide subject
sequences).

Ideally, one should be able to independently replace the
functionality described in each of the small rectangles of
Figure 1 (e.g., "build lookup table") with another imple-
mentation. Some coordination is required: for example,
the lookup table is used when finding word matches, so
both "build lookup table" and "find word matches" need
to be changed together. Finding word matches is the most
computationally intensive part of the BLAST search, so the
implementation should be as fast as possible. To address
this, the author of the lookup table implementation must
provide the scanning routine for finding word hits. Other
modules can be changed independently.

The selection of ISO C99 allows use of the new BLAST
code in both C and C++ environments. The host toolkit
provides a software layer to allow BLAST to communicate
with the rest of each toolkit. This design requires a clean
separation between the algorithmic part of BLAST and the
module that retrieves subject sequences from the data-
base. To allow this, the retrieval of subject sequences for

Schematic of a BLAST searchFigure 1
Schematic of a BLAST search. The first phase is "setup". The query is read, low-complexity or other filtering might be
applied to the query, and a "lookup" table is built. The next phase is "scanning". Each subject sequence is scanned for words
("hits") matching those in the lookup table. These hits are further processed, extended by gap-free and gapped alignments, and
scored. Significant "preliminary" matches are saved for further processing. The final phase in the BLAST algorithm, called the
"trace-back", finds the locations of insertions and deletions for alignments saved in the scanning phase.

Setup

Read options

Mask query

Build lookup
table

Read query
Trace-back

Calculate improved
score and
insertions/deletions

Scanning

Find word
matches

Gap free
extensions

Gapped
extensions

Matches?

Save hits

More
sequence?

Y

Y

N

N
Page 3 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
processing by the core of the BLAST code is performed
through an Abstract Data Type (ADT), which specifies a
set of data values and permitted operations. The actual
retrieval occurs through an implementation of the ADT in
the host toolkit. The implementation can be changed
depending upon the need and requires no changes to the
BLAST algorithm code itself.

The subject sequence information required by BLAST is
quite simple. It consists of the total number of sequences
to be searched, the length of any given sequence, as well
as methods to retrieve the actual sequence. The total data-
base length is needed for calculation of expect values. A
database name and the length of the longest subject
sequence are also required to implement some functions
in an efficient manner. In order to satisfy the above
requirements, an ADT, called the BlastSeqSrc [16], was
implemented.

Database masking
Low-complexity regions and interspersed repeats typically
match many sequences. These matches are normally not
of biological interest, may lead to spurious results, and
confound the statistics used by BLAST. BLAST offers two
query masking modes to avoid such matches. One is
known as "hard-masking" and replaces the masked por-
tion of the query by X's or N's for all phases of the search.
On the other hand, "soft-masking" makes the masked
portion of the query unavailable for finding the initial
word hits, but the masked portion is available for the gap-
free and gapped extensions once an initial word hit has
been found.

The BLAST databases can also be masked. Masking infor-
mation is stored as a series of intervals, so that masking
can be switched on or off. Information from multiple
masking algorithms can be stored in the same BLAST data-
base and accessed separately. Currently, database masking
consists of skipping masked portions of the database dur-
ing the scanning phase, but it is still possible to extend
through masked portions of the database; as such, data-
base masking is analogous to soft-masking a query.

Minimizing memory and cache footprint
Modifications that reduce the CPU time and memory
footprint of BLAST searches with long query or subject
sequences are examined. First, an optimization for the
scanning phase of the BLAST search is presented. Then, an
improvement for the trace-back phase is described.

BLAST searches with very large queries are routine, but
some of the data structures scale with the query length.
The following analysis examines the scanning phase (Fig-
ure 1) of the BLAST search.

Two large structures are frequently accessed during the
scanning phase. The first is the "lookup table", which
maps words in a subject sequence to positions in the
query. The second is the "diag-array", which tracks how far
BLAST has already extended word hits on any given diag-
onal; its size scales with the query length. The scanning
phase is a large fraction of the time of most BLAST
searches, so these structures must be accessed quickly.
Contemporary CPUs typically communicate with main
memory through several levels of cache, called a "memory
hierarchy". For example, the L1 cache is the smallest and
has the lowest latency; the L2 cache is larger but slower.
On a machine with an Intel Xeon CPU, the L1 cache might
be around 16 kB and the L2 cache can range in size from
0.5-4 MB. If the CPU does not find data or an instruction
in the cache, it must fetch it from main memory; a "cache
miss". Performance could be improved by making the
lookup table and diag-array small enough to fit into L2
cache, still leaving room for instructions and other data.

In order to be specific, the discussion in the next two par-
agraphs is limited to a BLASTX search, which translates a
nucleotide query in six frames (three frames on each
strand) and compares it to a protein database.

The lookup table contains a long array (the "backbone"),
with each cell mapping to a unique word. The lookup
table translates each residue type to a number between 1
and 24, so a three-letter word maps to an integer between
1 and 243. For a three-letter word, an array of 32768 (323)
cells allows a quick calculation of the offset into the back-
bone while scanning the database for word matches. Each
cell of the backbone consists of four integers. The first
integer specifies how many times that word appears in the
query; the other three can have one of two functions. For
three or fewer occurrences, the three integers simply spec-
ify the positions of the word in the query. If there are more
than three occurrences, however, the integers are an index
into another array containing the positions of the word in
the query. The total memory occupied by the backbone is
16 bytes × 32768, or about 524 kB. Finally, there is a bit
vector occupying 4096 bytes (32768/8). The correspond-
ing bit is set in the bit vector for backbone cells containing
entries. For a short query, where the backbone may be
sparsely populated, this allows a quick check whether a
cell contains any information.

A BLASTX query of N nucleotides becomes twice as long
when it is represented as six protein sequences. The diag-
array consumes one four-byte integer per letter in the
query. An estimate of the total memory occupied by the
lookup table backbone and the diag-array, in bytes, for a
nucleotide query of length N is:

528 384 8, + N
Page 4 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
For a query of N = 50 k, this is close to a million bytes,
already the total size of L2 cache in many computers used
for BLAST searching. Modifications to these structures
might permit larger queries, but for contigs and chromo-
somes the structures would still overflow the L2 cache. To
overcome this, the query is split into smaller overlapping
pieces for the scanning phase of the search. BLAST then
merges the results and aligns the entire query during the
trace-back phase, obtaining the same results as a search
that was not split. Splitting the query has an additional
advantage; since the sub-query used during the scanning
phase is of bounded length, it is possible to use a smaller
data type in the lookup table (specifically, a two byte
rather than a four byte integer). This reduces the first term
in the above equation from 528,384 to 266,240 bytes.

The final phase of the BLAST search, the trace-back, proc-
esses the preliminary matches, producing an alignment
with insertions and deletions. Additionally, heuristic
parameters may be assigned a more sensitive value, ambi-
guities in a nucleotide database sequence are resolved,
and the composition of the subject sequences may be
taken into account when calculating expect values. Some
subject sequences must be retrieved again for this calcula-
tion, but since the preliminary phase finds the rough
extent of any alignment, the entire sequence is often not
needed. This is most important for short queries searched
against a database of much longer sequences. Only part of
the subject sequences, when appropriate, is now retrieved,
and performance results are presented under "Partial sub-
ject sequence retrieval" below.

Results and discussion
First, we introduce a set of BLAST command-line applica-
tions built with the software library discussed above.
Then, we present an example use of database masking as
well as two performance analyses that demonstrate
improvements in search time: searches with very long
queries and searches of chromosome-sized database
sequences. For each performance analysis, we prepared a
baseline application that disables the new feature being
tested. Finally, we discuss an example of retrieving subject
sequences from an arbitrary source.

A SUSE Linux machine with an Intel Xeon 3.6 GHz CPU,
16 kB of L1 cache, 1 MB of L2 cache, and 8 GB of RAM,
provided data for the comparisons described here.

BLAST+ command-line applications
New command-line applications have been developed
using the NCBI C++ toolkit, and they are referred to as the
BLAST+ command-line applications (or BLAST+ applica-
tions). Extensive documentation about the different com-
mand-line options is available [17], so only general
comments about the interface are presented here. The

NCBI C++ toolkit argument parser permitted the use of
multi-letter command-line arguments. New BLAST+ com-
mand-line applications were introduced, dependent upon
the molecule types of the query and subject sequences. For
example, there is a "blastx" application that translates a
nucleotide query and compares it to a protein database,
and a "blastn" application that compares a nucleotide
query to a nucleotide database. The command-line
options and help messages are specific to each applica-
tion. In contrast, the current C toolkit command-line
application ("blastall") presents usage instructions about
nucleotide match and mismatch scores, needed only for
BLASTN, even if the user wants to perform a BLASTX
search. Users also need to optimize for different tasks
within a single command-line application. For example,
MEGABLAST compares a nucleotide query to a nucleotide
database, but is optimized for closely related sequences
(e.g., searching for sequencing errors), using a large word
size and a linear gap penalty. BLASTN, on the other hand,
is the traditional nucleotide-nucleotide search program
and uses a smaller word size and affine gapping by
default. The concept of a "task" allows a user to optimize
the search for different scenarios within one application.
Setting the task for the blastn application changes the
default value of a number of command-line arguments,
such as the word size, but also the default scoring param-
eters for insertions, deletions, and mismatches. These val-
ues are changed to typical values that would be used with
the selected task. For the MEGABLAST task, the nucleotide
match and mismatch values are 1 and -2, as this corre-
sponds to 95% identity matches. In contrast, for BLASTN
and DISCONTIGUOUS MEGABLAST, the values are 2 and
-3 as they correspond to 85% identity [18].

Power users of BLAST often have a specially crafted set of
command-line options that they find useful for their par-
ticular task. However, lacking a method to save these, they
must write scripts or simply re-type them for each search.
The BLAST+ applications can write the query, database,
and command-line options for a BLAST search into a
"strategy" file. A user may then rerun a set of commands
by specifying the strategy file, though a new query and
database can be specified with the command-line. This
file is currently written as ASN.1 (Abstract Syntax Nota-
tion, a structured language similar to XML), but an XML
option could be added in the future. Users can also
upload this file to the NCBI BLAST web site to populate a
BLAST search form, or download a strategy file for a search
performed at the NCBI BLAST web site.

The BLAST+ applications have a number of new features.
A GI or accession may be used as the query, with the actual
sequence automatically retrieved from a BLAST database
(the sequence must be available in a BLAST database) or
from GenBank. The applications can send a search to
Page 5 of 9
(page number not for citation purposes)

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
NCBI servers as well as locally search a set of queries
against a set of FASTA subject sequences [17].

Tables listing the command-line options, as well as their
types and defaults, were provided as additional file 1 for
this article.

Database masking
Applying masking information to the BLAST database
rather than the query will improve the workflow for
BLAST users. A specialized tool, such as WindowMasker
[19] or RepeatMasker [10], can provide masking informa-
tion for a single-species database when it is created, and it
becomes unnecessary to mask every query. Adding mask-
ing information to a BLAST database is a two step process.
A file containing masking intervals in either XML or ASN.1
format is first produced, and then the information is
added to the BLAST database. The NCBI C++ toolkit pro-
vides tools to produce this information for seg [20], dust
[21], and WindowMasker [19]. Users may also provide
intervals for algorithms not supported by the NCBI C++
toolkit; see the BLAST+ manual [17] for further informa-
tion on how to produce a masked database. Currently,
database masking is only available in soft-masking mode.

To test the performance of database masking, 163 human
ESTs from UniGene cluster 235935 were searched against
the build 36.1 reference assembly of the human genome
[22]. RepeatMasker processed the EST queries, producing
FASTA files with repeats identified in lower-case. Repeat-
Masker also processed the human genome FASTA files,
locations of repeats were produced from that data, and
those locations were then added as masking information
to the BLAST database. Two sets of searches were run. One
used the lower-case query masking to filter out inter-
spersed repeats; the other used the database masking to do
the same. Alignments with a score of 100 or more were
retained. Table 1 presents the results, which indicate that
differences in query masking with RepeatMasker caused
extra matches. For example GI 14400848 is only 145
bases long and is not masked by RepeatMasker at all, but
the portion of the genome it matches is masked. For GI
13529935 the last 78 bases are not masked, but the por-
tion of the genome it matches is masked by RepeatMasker.

Currently, database masking is not supported for searches
of translated database sequences (i.e., tblastn and tblastx),
but it will be supported in the near future.

Database masking is not a new concept. Kent [13] men-
tions cases where BLAT users might find repeat masking of
the database useful. Morgulis et al. [23] also allow users to
apply soft-masking to their database. In both of these
cases, it is not simple to turn the masking on or off or to
switch the type of masking (e.g., from RepeatMasker to
WindowMasker). The implementation presented here
allows this flexibility.

Query splitting
Breaking longer queries into smaller pieces for processing
can lead to significantly shorter search times. At the same
time, splitting the query into pieces makes it possible to
guarantee that the query length is always bounded, allow-
ing the use of smaller data types in the lookup table. Use
of smaller data types with a BLASTP search (protein-pro-
tein) shows no improvement for sequences under 500 res-
idues, but performance increases by up to 2% as the
sequence length increases to 8000 residues. Use of a
smaller data type never makes performance worse, so it is
used in the tests described in this section.

BLAST searches of differently-sized chunks of zebra fish
chromosome 2 [Genbank:NC_007113.2] against a set of
human proteins were performed to test the query splitting
implementation. A baseline blastx application that does
not split the query was prepared. Figure 2 presents the
speedup for these searches, with speedup defined as (Tbase-

line/Tblastx) - 1. Query splitting decreases the search time for
queries longer than 20 kbases, and the improvement con-
tinues with increasing query length. The Cachegrind
memory profiling tool [24] confirmed a smaller number
of cache misses with query splitting. Figure 3 presents
those results. Figures 2 and 3 reflect an expect value cutoff
of 1.0e-6.

Cameron et al. [14] replaced the BLAST lookup table with
a DFA (Deterministic Finite Automaton) to improve the
cache behavior. They reported a 10-15% reduction in
search time for BLASTP (protein-protein) searches. Most
proteins are too short to split, so no significant BLASTP
improvements were apparent in the work presented here.
This work emphasized improving the worst-case behavior
typically seen with very long nucleotide queries. The
query splitting approach does not preclude the use of a
DFA or some other optimization instead of a lookup
table.

Table 1: Comparison of query versus database masking.

Type of masking Number of alignments found GIs of extra sequences found

Query 387 13529935, 14400848, 14430244, 14430457

Database 383
Page 6 of 9
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007113.2

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
Partial subject sequence retrieval
Partial retrieval of subject sequences is most effective
when a small fraction of the subject sequence is required
in the trace-back phase, such as in a search of ESTs against
chromosomes. A baseline blastn application that retrieves
the entire subject sequence in the trace-back phase was
prepared. 163 human ESTs from UniGene cluster 235935
were searched against the masked human genome data-
base from build 36.1 of the reference assembly [22]. Fig-
ure 4 presents search times with the standard blastn
application and a baseline application. A word size of 24
and database masking (with RepeatMasker) was used. The
ESTs with matches to the largest number of subject
sequences showed the best improvement. The three right-
most data points on Figure 4 are for GIs 14429426,
13529935, and 34478925 (left to right). These three ESTs
match four, six, and eight database sequences respectively.
Overall, 158 sequences matched only one subject
sequence, two matched two sequences and there was one
match each for four, six, and eight sequences. As expected,
performance did not improve for ESTs searched against a
database of ESTs (data not shown).

Retrieving subject sequences from an arbitrary source
An Abstract Data Type (ADT) supplies the subject
sequences to be searched in the new BLAST code. This
abstraction avoids coupling the BLAST engine to a partic-
ular database format. It permits a search of sequences in
the "Short Read Archive" (SRA) at the NCBI through the
SRA Software Development Kit [25]. An SRA BLAST web
page accessible from the BLAST web site [11] was also cre-
ated.

Future development
Future developments include adding hard-masking sup-
port for databases, and making database masking availa-
ble for programs with translated database sequences
(tblastn and tblastx). At this point, only the scanning
phase of the BLAST search is multi-threaded; we also plan
to make the trace-back phase multi-threaded.

Conclusions
We have reported on a new modular software library for
BLAST. The design allows the addition of features that
greatly benefit performance, such as query splitting and
partial retrieval of subject sequences. It also allows the
replacement of the lookup table with another design, so
that new implementations can easily be added. An
indexed version of MEGABLAST [23] was implemented
using these libraries. The new library also supports a
framework for retrieving subject sequences from arbitrary
data sources. This framework, an Abstract Data Type
(ADT), allows the use of different modules to read the
BLAST databases in the NCBI C++ and the C toolkits. It is
possible to write a new module to supply subject
sequences to the BLAST engine using this ADT [16] with-
out any modifications of the BLAST algorithm code. An
ADT implementation has been written to support produc-
tion searches of SRA sequences at the NCBI.

L2 data cache misses for BLASTX searches with and without query splittingFigure 3
L2 data cache misses for BLASTX searches with and
without query splitting. Cache misses were measured by
Cachegrind [24] and only misses reading from the cache are
shown. On the x-axis are different query lengths in kbases.
The number of L2 cache misses is shown on the y-axis. The
top line is for the baseline application without query splitting,
the bottom line is for the blastx application. The queries are
different sized pieces of [Genbank:NC_007113.2] searched
against the set of human proteins used for Figure 2.

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

L2
 d

at
a

re
ad

 m
is

se
s

Query length (kbases)

Speedup of BLASTX searches for differently sized queries with and without query splittingFigure 2
Speedup of BLASTX searches for differently sized
queries with and without query splitting. Different
sized pieces of [Genbank:NC_007113.2] were searched
against a set of human proteins. The query length in kbases is
on the x-axis, with a log scale. On the y-axis is the fractional
speedup, which is defined as (Tbaseline/Tblastx) - 1. Three
searches were performed with both the baseline and the
blastx applications (for each data point), and the lowest time
for each application was used.

0

0.5

1

1.5

2

2.5

3

3.5

1 10 100 1000 10000 100000

S
pe

ed
up

Query length (kbases)
Page 7 of 9
(page number not for citation purposes)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007113.2
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=NC_007113.2

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
We also described a new set of BLAST command-line
applications. The applications have a new, more logical
organization that groups together similar types of searches
in one application. The concept of a task allows a user to
specify an optimal parameter set for a given task. Strategy
files were also introduced, allowing a user to record
parameters of a search in order to later rerun it in stand-
alone mode or at the NCBI web site.

Availability and requirements
BLAST is Public Domain software [26]. The latest version
of BLAST can be retrieved from ftp://
ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST.
This software was implemented with the C and C++ pro-
gramming languages and was tested under Microsoft Win-
dows, Linux, and Mac OS X. There are no restrictions on
use by non-academics. Query files and BLAST databases
used for tests are available at ftp://ftp.ncbi.nih.gov/blast/
demo/bmc.

Authors' contributions
All authors participated in the design and coding of the
software. TLM drafted the manuscript and the other
authors provided feedback. All authors read and approved
the final version of the manuscript.

Additional material

Acknowledgements
A number of people contributed to this project. Richa Agarwala, Alejandro
Schaffer, and Mike DiCuccio offered ideas and feedback. Mike Gertz, Ale-
ksandr Morgulis, and Ilya Dondoshansky contributed some of the code
used in the core of BLAST. Denis Vakatov, Aaron Ucko and other members
of the NCBI C++ toolkit group offered assistance as well as the C++ toolkit
used to build BLAST+. Eugene Yaschenko, Kurt Rodarmer and Ty Roach
provided help in using the NCBI SRA Software Development Toolkit. David
Lipman and Jim Ostell originally suggested the need for a rewritten version
of BLAST and provided encouragement and feedback. Greg Boratyn, Mau-
reen Madden and John Spouge read the manuscript and offered helpful sug-
gestions.

This research was supported by the Intramural Research Program of the
NIH, National Library of Medicine. Funding to pay the Open Access publi-
cation charges for this article was provided by the National Institutes of
Health.

References
1. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local align-

ment search tool. J Mol Biol 1990, 215(3):403-410.
2. Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman

D: Gapped BLAST and PSI-BLAST: a new generation of pro-
tein database search programs. Nucleic Acids Res 1997,
25(17):3389-3402.

3. NCBI C toolkit [http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDK
DOCS/INDEX.HTML]

4. Zhang Z, Schäffer A, Miller W, Madden T, Lipman D, Koonin E, Alts-
chul S: Protein sequence similarity searches using patterns as
seeds. Nucleic Acids Res 1998, 26(17):3986-3990.

5. Schäffer A, Wolf Y, Ponting C, Koonin E, Aravind L, Altschul S:
IMPALA: matching a protein sequence against a collection
of PSI-BLAST-constructed position-specific score matrices.
Bioinformatics 1999, 15(12):1000-1011.

6. Schäffer A, Aravind L, Madden T, Shavirin S, Spouge J, Wolf Y, Koonin
E, Altschul S: Improving the accuracy of PSI-BLAST protein
database searches with composition-based statistics and
other refinements. Nucleic Acids Res 2001, 29(14):2994-3005.

7. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for
aligning DNA sequences. J Comput Biol 7(1-2):203-214.

8. A/G BLAST [http://www.apple.com/downloads/macosx/
math_science/agblast.html]

9. Waterston R, Lindblad-Toh K, Birney E, Rogers J, Abril J, Agarwal P,
Agarwala R, Ainscough R, Alexandersson M, An P, et al.: Initial
sequencing and comparative analysis of the mouse genome.
Nature 2002, 420(6915):520-562.

10. RepeatMasker Web site [http://www.repeatmasker.org/]
11. NCBI BLAST web site [http://blast.ncbi.nlm.nih.gov/Blast.cgi]
12. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Mad-

den T: NCBI BLAST: a better web interface. Nucleic Acids Res
2008, 36(Web Server issue):W5-9.

Additional file 1
Eight tables list the command-line application options, as well as their
types, default values, and a short explanation. The first table has infor-
mation common to the search applications blastn, blastp, blastx, tblastn,
and tblastx. The next five tables describe options for those applications.
The last two tables list the options for makeblastdb (used to build a blast
database) and blastdbcmd (used to read a database).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-421-S1.PDF]

Scatter plot of MEGABLAST search times with and without partial retrievalFigure 4
Scatter plot of MEGABLAST search times with and
without partial retrieval. 163 human ESTs from UniGene
cluster 235935 were searched against all human chromo-
somes [22]. On the x-axis are times for the baseline applica-
tion; on the y-axis are times for the new blastn application.
Sequences with the best improvement are those furthest to
the right, and they also matched the largest number of sub-
ject sequences. A word size of 24 was used for the runs as
well as database masking with RepeatMasker. Three searches
were done with both the baseline and blastn application for
each data point, and the lowest time for each application was
used.

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

bl
as

tn
(s

ec
on

ds
)

baseline (seconds)
Page 8 of 9
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-421-S1.PDF
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST
ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST
ftp://ftp.ncbi.nih.gov/blast/demo/bmc
ftp://ftp.ncbi.nih.gov/blast/demo/bmc
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9705509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10745990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10745990
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11452024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11452024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11452024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10890397
http://www.apple.com/downloads/macosx/math_science/agblast.html
http://www.apple.com/downloads/macosx/math_science/agblast.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12466850
http://www.repeatmasker.org/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18440982

BMC Bioinformatics 2009, 10:421 http://www.biomedcentral.com/1471-2105/10/421
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

13. Kent W: BLAT--the BLAST-like alignment tool. Genome Res
2002, 12(4):656-664.

14. Cameron M, Williams H, Cannane A: A deterministic finite
automaton for faster protein hit detection in BLAST. J Com-
put Biol 2006, 13(4):965-978.

15. NCBI C++ toolkit documentation [http://
www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit]

16. Implementing a BlastSeqSrc [http://www.ncbi.nlm.nih.gov/IEB/
ToolBox/CPP_DOC/doxyhtml/_impl_blast_seqsrc_howto.html]

17. BLAST+ Command Line Applications User Manual [http://
www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpblast]

18. States DJ, Gish W, Altschul SF: Improved sensitivity of nucleic
acid database searches using application-specific scoring
matrices. METHODS: A Companion to Methods in Enzymology 1991,
3:66-70.

19. Morgulis A, Gertz E, Schäffer A, Agarwala R: WindowMasker: win-
dow-based masker for sequenced genomes. Bioinformatics
2006, 22(2):134-141.

20. Wootton JC, Federhen S: Analysis of compositionally biased
regions in sequence databases. Computer Methods for Macromo-
lecular Sequence Analysis 1996, 266:554-571.

21. Morgulis A, Gertz E, Schäffer A, Agarwala R: A fast and symmetric
DUST implementation to mask low-complexity DNA
sequences. J Comput Biol 2006, 13(5):1028-1040.

22. Reference assembly for Human genome build 36.1 [http://
www.ncbi.nlm.nih.gov/genome/guide/human/
release_notes.html#b36]

23. Morgulis A, Coulouris G, Raytselis Y, Madden T, Agarwala R, Schäffer
A: Database indexing for production MegaBLAST searches.
Bioinformatics 2008, 24(16):1757-1764.

24. Cachegrind [http://valgrind.org/docs/manual/cg-manual.html]
25. NCBI SRA Software Development Kit

[http:www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=soft
ware&m=software&s=software]

26. PUBLIC DOMAIN NOTICE for NCBI [http://
www.ncbi.nlm.nih.gov/bookshelf/
br.fcgi?book=toolkit&part=toolkit.fm#A3]
Page 9 of 9
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11932250
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761921
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16761921
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/_impl_blast_seqsrc_howto.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/_impl_blast_seqsrc_howto.html
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpblast
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helpblast
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287941
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16796549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16796549
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16796549
http://www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html#b36
http://www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html#b36
http://www.ncbi.nlm.nih.gov/genome/guide/human/release_notes.html#b36
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18567917
http://valgrind.org/docs/manual/cg-manual.html
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software
http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=toolkit.fm#A3
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=toolkit.fm#A3
http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=toolkit&part=toolkit.fm#A3
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Implementation
	Overall design
	Database masking
	Minimizing memory and cache footprint

	Results and discussion
	BLAST+ command-line applications
	Database masking
	Query splitting
	Partial subject sequence retrieval
	Retrieving subject sequences from an arbitrary source
	Future development

	Conclusions
	Availability and requirements
	Authors' contributions
	Additional material
	Acknowledgements
	References

